

Fifth Semester B.E. Degree Examination, July/August 2021 Design of RC Structural Elements

Time: 3 hrs.
Max. Marks: 100

Note: 1. Answer any FIVE full questions.
 2. Use of IS456-2000, SP - 16 Permitted.
 3. Assume any missing data suitably.

1 a. What is a Stress block? Derive from fundamentals the expression for area of stress block $0.36 \mathrm{f}_{\mathrm{uc}} \mathrm{x}_{\mathrm{u}}$ and depth of centre of compressive force from the extreme fibre in compression $0.42 \mathrm{x}_{\mathrm{u}}$.
(10 Marks)
b. Briefly explain the modes of failure of beam sections with sketches.
(10 Marks)
2 A rectangular simply supported beam of span 5 m is $300 \mathrm{~mm} \times 650 \mathrm{~mm}$ in cross section and is reinforced with 3 bars of 20 mm on tension side as an effective cover of 50 mm . Determine short term deflections due to an imposed load of $20 \mathrm{kN} / \mathrm{m}$. Assume grade of concrete M_{20} and Fe 415 grade steel.
(20 Marks)
3 A singly reinforced beam $300 \mathrm{~mm} \times 450 \mathrm{~mm}$ in section is reinforced with $3-$ bars of 20 mm diameter with an effective cover of 50 mm . Effective span of the beam is 6 m . Assuming M_{20} concrete and Fe 415 steel, determine the Central Concentrated load P that can be carried by the beam in áddition to its self weight.
(20 Marks)
4 Calculate the area of reinforcement required for L - beam of flange width 1000 mm , flange thickness 120 mm , width of rib 250 mm , total depth 750 mm and effective cover 70 mm to resist an ultimate bending moments (a) $400 \mathrm{kN}-\mathrm{m}$ /(b) $75 \mathrm{kN}-\mathrm{m}$. Assume concrete grade M_{20} and steel of grade Fe 415.
(20 Marks)
5 A T - beam slab floor has 125 mm thick slab forming part of T-beams which are of 8 m clear span. The end bearings are 300 mm thick, Spacing of $\mathrm{T}-$ beams is 3.5 m . The live load on floor is $3 \mathrm{kN} / \mathrm{m}^{2}$. Design one of the intermediate beams. Using M_{20} grade concrete and Fe 415 grade steel. Design the beam and sketch the details of reinforcement.
(20 Marks)
6 Design a rectangular beam of section $230 \mathrm{~mm} \times 600 \mathrm{~mm}$ of effective span 6 m . Effective cover should be kept as 50 mm imposed load on the beam is $40 \mathrm{kN} / \mathrm{m}$. Use M_{20} concrete and Fe 415 steel.
(20 Marks)
7 Design a Cantilever slab projecting 1.5 m from a beam. Adopt live load of $2.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M_{20} concrete and Fe 415 steel. Design the slab and sketch the details of reinforcement.
(20 Marks)
8 Design a dog legged stairs for an office building in a room measuring $2.8 \mathrm{~m} \times 5.8 \mathrm{~m}$ clear. Vertical distance between the floor is 3.6 m . Width of the flight is to be 1.25 m . Allow a live load of $3 \mathrm{kN} / \mathrm{m}^{2}$. Use M_{20} concrete and Fe 415 grade steel. Assume the stairs are supports on 230 mm walls at the end of outer edges of landing slabs.
(20 Marks)
9 Design a square footing for a short axially loaded column of size $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ carrying 600 kN load. Use M20 concrete and Fe 415 steel. SBC of soil is $180 \mathrm{kN} / \mathrm{m}^{2}$. Sketch the details of reinforcement.
(20 Marks)
10 An R.C. column of unsupported length 2.75 m has to be designed for an ultimate axial load 3250 kN . Find cross - sectional dimensions of the column and reinforcement required. Use M_{20} grade of concrete and Fe 415 steel. Sketch the details of reinforcement.
(20 Marks)

